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In this paper we describe the electromagnetic proprieties of modes in microstructured optical fibers (MOFs). It is well known 
that optical fibers have a large number of modes that can be used in different types of structures, at certain wavelengths. 
Also, multi-structural optical fibers have remarkable properties, namely: variable dispersion, nonlinearity, and single-mode 
operation over a wide range of wavelengths. We investigated the propagation of the electromagnetic modes, at different 
wavelengths in two types of MOFs: solid core fibers and hollow core fibers. Wijngaard stated that in a certain region, a field 
can be written as a superposition of outgoing waves from all source bodies. To describe the stability of the effective 
refractive index we used the Wijngaard test around inclusions in MOFs, we computed the Wijngaard integral W, which is a 
measure of the accuracy of the equality between the local and the Wijngaard expansions. Our simulations were made in 
CUDOS MOF Utilities software and are based on the multipole mathematical method. 
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1. Introduction 
 

The study of electromagnetic proprieties in 

microstructured optical fibers (MOF) was of great interest 

lately, due to their ability to operate in single-mode over a 

wide range of wavelengths [1]. Also, these fibers have 

remarkable proprieties, as: large and adjustable dispersion 

and nonlinearity. Nonlinear microstructured fibers (made 

from lead oxide, bismuth oxide, tellurium oxide, and 

chalcogenide glasses) were designed for four-wave mixing 

- based telecommunication applications [2-4].  

Boris et all. discussed a new transformation technique 

for analysing the wave vector content of microstructured 

optical fiber modes, to improve the efficiency in their 

computations. Also, this technique gives good physical 

insight into the nature of the mode [5].  

The multipole method is a very powerful 

mathematical tool that was intensively used in the last 

decade, due to the increased computational efficiency in 

comparison with other methods [6-8]. The multipole 

method was used to: calculate the electromagnetic 

proprieties of the modes in microstructured optical fibers, 

calculate the air guided modes in photonic crystal fibers 

[9], analyse the photonic crystal fibers with coated 

inclusions [10]. 

In this study we simulated the electromagnetic modes 

for Ez component of the field in solid and hollow core 

fibers. Also, we performed a Wijngaard test around 

inclusions in MOFs, to describe the stability of the 

refractive index. For our simulation we used CUDOS 

MOF Utilities software. 

 

2. Mathematical model 
 

The term of holey fiber and microstructured optical 

fiber refer to any kind of fiber with a set of inclusions 

running along the fiber axis [11].  

The geometry of the hollow and solid core fibers are 

presented in Fig. 1. For solid core fiber the geometry is 

similar to that of a conventional step index fiber, meaning 

that the refractive index in the cladding is smaller than the 

refractive index in the core. The wave-guide in solid core 

fiber is easier. 

In the case of hollow core fibers the wavelength range 

is very narrow (few tens of nm for guidance in infrared 

and visible), making the guidance and the manufacture 

challenging. 

 

 

 

a.                                             b. 

Fig. 1. a. Cross-section of a solid core microstructured 

optical fiber (SMOF); b. Cross-section of a hollow core 

microstructured optical fiber (HMOF). 
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Solid core and hollow core MOFs are both extremely 

promising new types of fibers, with completely different 

proprieties and possible applications [11]. 

The multipole method is a mathematical method to 

find the modes in step-index optical fiber and has 

numerous advantages: well suited for computation 

involving material dispersion, can be used over a wide 

range of wavelengths relative to MOF dimensions, can 

deal with solid core MOFs and air core photonic crystal 

fibers, the symmetrical proprieties permits the user to 

reduce the number of numerical computations [7, 8], [11]. 

The simplest model for the multipole method is that 

when we consider a single inclusion in the matrix (Fig. 2), 

with the center in the origin of the coordinate system [11, 

12]. 

 

 

Fig. 2.  Single inclusion in the matrix with the center  

in the origin where Si and So are sources [9]. 

 

The field V can be written as a Fourier – Bessel series: 
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number, β the propagation constant, nM the refractive 

index in the matrix); nn BA , Fourier-Bessel 
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of first kind of order n; nY  is the Bessel function of second 

kind of order n. 

Our Fourier-Bessel series can be split in two parts as 

we can see in equation (2): R – the regular part of V that 

describes the fields radiated from sources situated beyond 

the outer circle (S0) and O – the singular part of V that 

describes the fields radiated from sources situated inside 

the inner circle (Si). S0 radiates a field which is regular in 

the annulus and in the region delimited by the inner circle 

of the annulus, while Si radiates a field that has a 

singularity in the annulus hence cannot be described by 

Fourier-Bessel series in that annulus [11,12]. 
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If we consider a complex case, then in the vicinity of 

the l
th

 (Fig. 3 where the solid lines indicate physical 

boundaries and the dashed lines indicate the regions of 

convergence) inclusion the electric field becomes [12]: 
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where Jm is the incident part, while Hm
1
 is the outgoing 

wave part. The equation is valid only from the surface of 

the cylinder to the nearest cylinder or source. 

 

 

 

Fig. 3. Multiple inclusions in the matrix with the 

 contributions to the fields outside a generic hole i [12]. 

 

Wijngaard describes in another way the fields, stating 

that a field in a region can be written as a superposition of 

outgoing waves from all sources bodies in the region: 
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Equation (4) is valid everywhere in the matrix. By 

combining equations (3) and (4) we obtain: 
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where the sum on the left hand side is associated with the 

regular incident field for inclusion l, while the double sum 

on the right hand side is associated with the outgoing field 

originating from all other inclusions ( lj  ), and the last 

sum represents the field coming from the jacket [12,13]. 

We conclude that: 

 

incjz VVE                                   (6) 
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where the term jV is generated by sources placed inside or 

at the boundary of the j
th

 inclusion, while the term incV is 

generated by sources outside or on the jacket boundary. 

Through the Wijngaard integral we describe the 

stability of the effective refractive index with respect to 

increase of multipole order. The Wijngaard integral is a 

measure of the accuracy of the equality between the local 

(eq. 3) and the Wijngaard expansions (eq. 4) and is defined 

as [8]: 
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3. Simulated results and discussions 
 

First, we consider a hollow core fiber with the 

following parameters: the number of the rings is equal 

with 3, the number of the missing rings is equal with 2, the 

central cylinder radius is equal with 5,55 µm, the cylinder 

radius is equal to 1,75 µm and d/pitch is equal to 2,22. 

In Fig. 4 we illustrated the real part, the imaginary 

part and the calculated Bloch modes for diffrent 

wavelengths inside the hollow core fiber. 

 

 

(a)                   (b)                                    (c) 

Fig. 4. Normalized real (a) an imaginary (b) field zE  for 

HMOF; (c) The computed Bloch Transform. 

 

In Fig. 5 we illustrated the evolution of the local field 

(dashed line) in comparison with the evolution of the field 

resulting from the Wijngaard expansion (solid line) for 

different multipole (M) order in hollow core fibers. We 

observed that for M = 1, the local field and the Wijngaard 

field have different evolutions, while for M = 9 and             

M = 12 the evolution the two fields are almost similar. 

Consequently, for M = 1 the effective refractive index is 

unstable, while for M =12 the effective refractive index is 

stable.  

The magnitude difference between the local field and 

the field resulting from the Wijngaard expansion for 

different wavelengths is presented in Fig. 6. 

 

 

 

 

Fig. 5. The evolution of the local field and the field 

resulting from the Wijngaard expansion for different 

multipole orders – HMOF. 

 

 

Fig. 6. The magnitude difference between the local field 

and the field resulting from the Wijngaard expansion for 

different wavelengths – HMOF. 

 

 

     Fig. 7. The evolution of the Wijngaard integral and the  

evolution of the refractive index with the multipole order. 

  

 

The evolution of the Wijngaard integral and the 

evolution of the refractive index with the multipole order 

are presented in Fig. 7. We observed that the Wijngaard 

integral decreases with the increase of the multipole 

orders. Also, as the multipole order increases, the effective 

Λ = 3 µm;  

M = 12 

Λ = 2.85 µm;  

M = 13  

 

Λ = 1.55 µm; 

M = 21 
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refractive index stabilizes, arround 0,97 for the real part 

and arround 0,01 for the imaginary part. 

Next, we consider a solid core fiber with the following 

parameters: the number of the rings is equal with 3, the 

number of the missing rings is equal with 2, the cylinder 

radius is equal to 1,75 µm and d/pitch is equal to 0,70. 

 

 

(a)                  (b)                                    (c) 

Fig. 8. Normalized real (a) an imaginary (b) field zE  for 

SMOF; (c) The computed Bloch Transform. 

 

Fig. 9 illustrates the evolution of the local field 

(dashed line) in comparison with the evolution of the field 

resulting from the Wijngaard expansion (solid line) for 

different multipole (M) orders in solid core fibers. For M = 

1 and M = 3 the evolution of the local field and the 

evolution of the Wijngaard field were different. We 

observed that for M = 5 the refractive index is very stable.  

In Fig. 10 we illustrated the difference between the 

local field and the field resulting from the Wijngaard 

expansion for different wavelengths. 

  

 

 

Fig. 9. The evolution of the local field and the field 

resulting from the Wijngaard expansion for different 

multipole orders – SMOF. 

 

Fig. 10. The magnitude difference between the local field 

and the field resulting from the Wijngaard expansion for 

different wavelengths – SMOF. 

 

As in the previous case, the evolution of the 

Wijngaard integral and the evolution of the refractive 

index with the multipole order are presented in Fig. 11. In 

the case of the solid core fibers we observed that the 

Wijngaard integral decreases with the increase of the 

multipole order. Also, as the multipole order increases, the 

effective refractive index stabilizes, arround 0,99 for the 

real part and arround 0,04 for the imaginary part. 

 

 

 

Fig. 11. The evolution of the Wijngaard integral and the 

evolution of the refractive index with the multipole order. 

 

 

4. Conclusions 
 

This paper describes some of the electromagnetic 

proprieties of modes in solid and hollow core MOFs. The 

stability of the effective refractive index is an important 

parameter in MOFs design. 

By using CUDOS MOF Utilities software we 

demonstrated that for solid and hollow core MOFs the 

Wijngaard integral decreases with the increase of the 

multipole order. Consequently, the effective refractive 

index stabilizes with the decrease of the Wijngaard 

integral.  
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